Thank you...

Driving the science & technology of the future. Optoelectronics Research Centre

SHETLAND ISLANDS

Hollow core Optical Fibers: a brief history and future perspectives

Walter Belardi

Optoelectronics Research Centre University of Southampton, UK

University, of Pavia 10th March 2016, Pavia

University of Southampton

Global optical fibre network

200 million km produced every year

Charles KAO Nobel Prize in Physics 2009

Transparency of fused silica

Capacity Crunch

The dream of beating telecom fibres !!

<u>M. Hirano</u> et al., "Record Low Loss, Record High FOM Optical Fiber with Manufacturable Process", OFC 2013 postdeadline

Hollow fibres (1964)

THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1984

Bragg Law

Bragg law (1^{st order)} $\lambda = 2\Lambda \sin \theta$

Judicious choice of n_{low} , n_{high} and Λ Constructive interference \downarrow Total reflection for $\Delta\lambda$ centred around λ

Λ n_{low} n_{high} Λ η_{low} n_{high} Λ η_{low} n_{high} Λ η_{low} η_{high} θ Judicious cho Constr Total reflecti

The concept of Bragg Fiber (1978)

Pochi Yeh, Amnon Yariv, and Emanuel Marom, "Theory of Bragg fiber," J. Opt. Soc. Am. **68**, 1196-1201 (1978)

The photonic crystal concept (1987)

The photonic crystal FIBRE concept

1991

Photonic bandgap fibre (1999)

<u>R. F. Cregan</u> et al.," Single-Mode Photonic Band Gap Guidance of Light in Air" Science 285, 1537 (1999)

Ultimate Loss of Photonic Crystal Fibre (2005)

P. J. Roberts et al., "Ultimate low loss of hollow-core photonic crystal fibres," Opt. Express **13**, 236-244 (2005)

The antiresonance concept (1986)

<u>M. A. Duguay</u> et al, "Antiresonant reflecting optical waveguides in Si02-Si multilayer structures", Appl. Phys. Lett. 49, 13 (**1986**)

Antiresonance

- Light guidance in a hollow core fiber can be achieved through an antiresonance phenomenon
- The wavelengths that are not in resonance with the core wall are reflected back into the core and propagate with low loss as a result of destructive interference in the Fabry-Perot resonator.

$$\lambda_l = \frac{4n_1 d}{(2l+1)} [(n_2/n_1)^2 - 1]^{1/2}, \quad l = 0, 1, 2, \dots$$

"Antiresonant reflecting photonic crystal fiber", Litchinitser et al., Opt. Lett. 27, 1592 (2002)

Hollow antiresonant fibres: Kagomé Fibres

"Stimulated Raman scattering in hydrogen-filled hollow core photonic crystal fiber", **F. Benabid** et al., Science 298, 399 (2002)

Bragg to Kagomé

<u>**G. J. Pearce**</u> et al., "Models for guidance in kagome-structured hollow-core photonic crystal fibres," Opt. Express **15**, 12680-12685 (2007)

Comparison

<u>G. J. Pearce</u> et al., "Models for guidance in kagome-structured hollow-core photonic crystal fibres," Opt. Express **15**, 12680-12685 (**2007**)

Structure simplification

<u>S. Février</u> et al., "Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification", Opt. Express **18**, 5142-5150 (2010)

Curving the fiber core boundary

Wang et al., CLEO 2010 Postdeadline

34dB/km at 3.05μm Single mode 24dB/km at2.4μm

<u>F. Yu</u> et al., Optics Express 20, 11153 (**2012**) Optics Express 21, 21466 (**2013**)

Impact of the negative curvature

<u>W. Belardi</u> et al., "Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers " Optics Express **21**, 21912(2013)

Confinement losses

Percentage of power

Power coupling

<u>W. Belardi</u> et al., "Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers " Optics Express **21**, 21912(2013)

Bending Losses

The need for a novel antiresonant fiber

Free Boundary Fibre

<u>W. Belardi</u> and J. C. Knight, "Hollow antiresonant fibers with low bending loss" Opt. Express **22**, 10091-10096 (2014).

Multiple layer antiresonant fibers

<u>**G. J. Pearce**</u> et al., "Models for guidance in kagome-structured hollow-core photonic crystal fibres,"

Opt. Express 15, 12680-12685 (2007)

Multiple Antiresonant Elements Fibre

W. Belardi and J. C. Knight, "Hollow antiresonant fibers with reduced attenuation" Opt. Letters **39**, 1853-1856 (2014).

Large Bandwidth Hollow antiresonant fibres

<u>W. Belardi</u> "Design and properties of hollow antiresonant fibers for the visible and near infrared spectral range" IEEE J. Light. Techn. 33, 4497 (2015).

Hollow antiresonant fibers

W. Belardi et al. Optics Express **21**, 21912 (2013)

W. Belardi et al. Optics Express 22, 10091 Optics Letters 39, 1853 (2014)

W. Belardi et al.

(2014)

W. Belardi J. Lightwave Techn.**33**, 4497 (2015)

Low bending loss with a core size of 110µm (at 3.2µm)

Low leakage loss with multiple AR elements in the cladding space

Common Glass

For everybody

Optical grade

Hystory of Glass

- Improving glass purity has allowed a reduction of attenuation of 4 orders of magnitude in the last 50 years
- However the required glass processing involve issues related to cost (or time consumption, or pollution or safety).
- Can we make low loss optical fibers with low optical quality glass ?
- Is there any specialty optical fiber that we can use ?

Nagel S., "Optical fiber: the expanding medium", IEEE Circuits Devices Magaz. March, 36 (1989)

COMPARATIVE VALU Glass Code Source Trade Name	7740 Corning Pyrex	8330 Schott Duran	GLASSES KG-33 Kimble Kimax
Composition App Wt %			
SiO ²	80.6	81.0	80.0
B ₂ O ₃	13.0	13.0	13.0
Na ₂ O+K ₂ O	4.0	4.0	4.0
Al ₂ O ₃	2.3	2.0	3.0
Annealing Point °C	560	560	565
Softening Point °C	821	820	827
Working Point OC	1252	1260	1255

Scattering loss \propto surface roughness \propto Tg/ $\!\gamma^{\sim}$

Fiber

- Loss of 420dB/km at 680nm and 950nm
- Loss of 520 dB/km at 532nm !! (comparable to that of silica based hollow core fibers !)
- Negligible bending loss

Single Mode operation

Back to the...past

- Optical fibers based on cheap borosilicate glass (140dB/m loss) can be made and show attenuations comparable to silica based hollow core optical fibers in the visible spectral range (0.5dB/m at 532nm), where they should also have lower scattering loss.
- The high glass attenuation and AR structure provide strong single mode guidance without any cladding mode over short fiber lengths (<1.65m) and with large core diameters (>60µm)

Conclusions

- Telecommunication fibres have loss of 0.15dB/km at 1550nm (the fundamental limit given by Rayleigh scattering is almost reached)
- ANTIRESONANCE is the fundamental mechanism capable of allowing efficient light propagation in air
- Loss limit in Hollow Core fibres is distated by surface scattering that largely decreases at longer (unconventional) wavelengths and can be reduced by using a different type of glass A N K. YOU
- A negative curvature of the hoi fracare of the confinement losses, up to 4 orders of magnitude (or more)
- The introduction of multiple antiresonant layers allows further reduction of the total loss of hollow core fibers and keep alive the dream of beating standard fiber technology
- Although the dream is far to come, its presence stimulates interest and curiosity in optical science.